Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ray J. Butcher ${ }^{\text {a* }}$ and Andrew P. Purdy ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ${ }^{\mathbf{b}}$ Chemistry Division Code 6120, Naval Research Laboratory, Washington, DC 20375-5342, USA

Correspondence e-mail:
butcher@harker.nrl.navy.mil

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.017 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.082$
Data-to-parameter ratio $=27.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Octakis(μ_{3}-tert-butylthiolato)bis(tert-butylthiol-ato)hexakis(1-methylpyrrolidin-2-one)- μ_{6}-sulfidohexabarium(II)

The title compound, $\left[\mathrm{Ba}_{6}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}\right)_{10} \mathrm{~S}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\right)_{6}\right]$, possessing twofold symmetry, contains a central μ_{6}-sulfido atom surrounded by six Ba atoms in an almost perfect octahedron. Of the six Ba atoms, two are seven-coordinate with an $\mathrm{S}_{5} \mathrm{O}_{2}$ donor set, while four are six-coordinate. Two of these have $\mathrm{S}_{5} \mathrm{O}$ and two have S_{6} donor sets. There are six 1-methyl-2pyrrolidone donor molecules, two each coordinated to two Ba atoms and one each coordinated to two other Ba atoms.

Comment

There have been numerous examples of high nuclearity transition metal clusters encapsulating S (Allen, 2002). Such S M_{6} clusters have been reported for Fe (Zhang et al., 2002, 2003, 2004; Zuo et al., 2003; Osterloh et al., 1999; Ohki et al., 2003), Cu (Wu, et al., 1988; Marsh, 1997; Hu, 2001; Lin et al., 2000a; Chen et al., 2003; Tang et al., 1993), Co (Shu et al., 1991), Zr (Fenske et al., 1991) and Ag (Chen et al., 2004; Lin et al., 1997; Matsumoto et al., 2000; Lin et al., 2000b; Jin et al., 1996), while SM_{8} clusters have been reported for Rh (Vidal et al., 1978) and Cu (Lin et al., 1999; Huang et al., 1991; Dehnen \& Fenske, 1996, Liu et al., 1995; Fenske et al., 2004). With the exception of one report of an SLi_{8} cluster (Banister et al., 1988), there has been no report of an $S M_{x}$ cluster involving a non-transition metal.

The title compound, (I), crystallized out of a reaction medium containing barium tert-butylsulfide, 1-methyl-2-

Received 28 October 2005 Accepted 15 December 2005 Online 20 January 2006

Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity.

Figure 2
The molecular packing of the title compound viewed along the b axis. H atoms have been omitted for clarity.
pyrrolidone (NMP) and $\mathrm{C}_{6} \mathrm{D}_{6}$ over a period of 6.5 years. The molecule has crystallographically imposed twofold symmetry with $\mathrm{Ba} 1, \mathrm{Ba} 2$ and the central S on a twofold axis. The coordination spheres for both Ba 1 and Ba 2 are similar, both being seven-coordinate with an $\mathrm{S}_{5} \mathrm{O}_{2}$ donor set, while Ba 3 and Ba 4
are both six-coordinate with $\mathrm{S}_{5} \mathrm{O}$ and S_{6} donor sets, respectively. Of the ten t-butylsulfide ligands, eight contain triply bridging S donors, while two are terminally coordinated. There are six 1-methyl-2-pyrrolidone donor molecules coordinated to four of the six Ba atoms. For the central S atom, the six $\mathrm{Ba}-\mathrm{S}$ distances range from 3.1011 (3) to 3.279 (4) \AA with an average of 3.20 (7) \AA. The $\mathrm{Ba}-\mathrm{S}$ distances for the triply bridging S donors range from 3.1389 (18) to 3.2901 (15) Å with an average of $3.209 \AA$. The terminal $\mathrm{Ba}-\mathrm{S}$ distance is 3.1258 (13) Å. For the 1-methyl-2-pyrrolidone ligands, the $\mathrm{Ba}-\mathrm{O}$ distances range from 2.693 (4) to 2.732 (2) \AA with an average of 2.707 (18) A. The six Ba atoms and the central S form an almost perfect octahedron, the maximum deviation of the $\mathrm{Ba}-\mathrm{S}-\mathrm{Ba}$ angles being 0.65 (5).

Experimental

$\mathrm{Ba}\left(\mathrm{SCMe}_{3}\right)_{2}$ (Purdy et al., 1997) was dissolved in 1-methyl-2-pyrrolidone containing about $10 \% \mathrm{C}_{6} \mathrm{D}_{6}$ and a drop of trimethylsilane and sealed in an NMR tube. After 6.5 years, a mass of colorless crystals was discovered in the NMR tube. The crystals were sealed in thinwalled glass capillaries.

Crystal data

$\left[\mathrm{Ba}_{6}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}\right)_{10} \mathrm{~S}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\right)_{6}\right]$
$M_{r}=2340.60$
Monoclinic, C2
$a=21.0316$ (11) \AA
$b=21.7686$ (11) \AA
$c=15.2669$ (8) \AA
$\beta=131.391$ (1) ${ }^{\circ}$
$V=5243.7(5) \AA^{3}$
$Z=2$
$D_{x}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7746
reflections
$\theta=2.6-29.2^{\circ}$
$\mu=2.48 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Chunk, colourless
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.498, T_{\text {max }}=0.609$
21162 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.082$
$S=1.05$
11503 reflections
416 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 11503 \text { independent reflections } \\
& 9871 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.023 \\
& \theta_{\max }=29.3^{\circ} \\
& h=-27 \rightarrow 25 \\
& k=-29 \rightarrow 29 \\
& l=-20 \rightarrow 20 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.029 P)^{2}\right. \\
& \quad+14.7453 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.65 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.63 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \quad \text { with } 4126 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.45(2)
\end{aligned}
$$

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.96-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. There are several disordered components in this structure: $(a) \mathrm{S} 4$ is disordered over two positions ($\mathrm{S} 4 A$ and $\mathrm{S} 4 B$) with occupancies of 0.81 (2) and 0.19 (2); (b) the tert-butyl group attached to S11 is disordered over two conformations with occupancies of

metal-organic papers

0.64 (1) and $0.36(1) ;(c)$ the tert-butyl group attached to S21 is disordered over two conformations with occupancies of 0.55 (2) and 0.45 (2). Both tert-butyl groups were restrained to be tetrahedral. The value of the Flack parameter (Flack, 1983) suggests inversion twinning.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

APP acknowledges ONR for funding.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Banister, A. J., Clegg, W. \& Gill, W. R. (1988). Chem. Commun. pp. 131-133. Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J.-X., Xu, Q.-F., Zhang, Y., Chen, Z.-N., \& Lang, J.-P. (2004). J. Organomet. Chem. 689, 1071-1077.
Chen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Cheng, J.-K., Hu, R.-F., Wen, Y.-H. \& Yao, Y.-G. (2003). Inorg. Chem. Commun. 6, 405-407.
Dehnen, S. \& Fenske, D. (1996). Chem. Eur. J. 2, 1407-1416.
Fenske, D., Grissinger, A., Loos, M. \& Magull, J. (1991). Z. Anorg. Allg. Chem. 598-599, 121-128.
Fenske, D., Rothenberger, A. \& Fallah, M. S. (2004). Z. Anorg. Allg. Chem. 630, 943-947.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Huang, Z.-X., Lu, S.-F., Huang, J.-Q., Wu, D.-M. \& Huang, J.-L. (1991). Jiegou Hиaxиe (Chin. J. Struct. Chem.), 10, 213-217.

Hu, S.-Z. (2001). Jiegou Hиaxue (Chin. J. Struct. Chem.), 20, 151-155.
Jin, X., Tang, K., Liu, W., Zeng, H., Zhao, H., Ouyang, Y. \& Tang, Y. (1996). Polyhedron, 15, 1207-1211.
Lin, P., Wu, X., Chen, L., Du, W. \& Zheng, Y. (1999). J. Chem. Crystallogr. 29, 581-586.
Lin, P., Wu, X., Chen, L., Wu, L. \& Du, W. (2000b). J. Chem. Crystallogr. 30, 55-60.
Lin, P., Wu, X., Zhang, W., Guo, J., Sheng, T., Wang, Q. \& Lu, J. (1997). Chem. Соттии. pp. 1349-1350.
Lin, P., Wu, X.-T., Chen, L., Wu, L.-M., \& Du, W.-X. (2000a). Polyhedron, 19, 2189-2193.
Liu, C. W., Stubbs, T., Staples, R. J. \& Fackler, J. P. Jr (1995). J. Am. Chem. Soc. 117, 9778-9779.
Marsh, R. E. (1997). Acta Cryst. B53, 317-322.
Matsumoto, K., Tanaka, R., Shimomura, R. \& Nakao, Y. (2000). Inorg. Chim. Acta, 304, 293-296.
Ohki, Y., Sunada, Y., Honda, M., Katada, M. \& Tatsumi, K. (2003). J. Am. Chem. Soc. 125, 4052-4053.
Osterloh, F., Sanakis, Y., Staples, R. J., Munck, E. \& Holm, R. H. (1999). Angew. Chem. Int. Ed. 38, 2066-2068.
Purdy, A. P., Berry, A. D. \& George, C. F. (1997). Inorg. Chem. 36, 3370-3375.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shu, T. L., Xiang, H., Qi, W. L. \& Zhang, W. T. (1991). Chin. Chem. Lett. 2, 335-337.
Tang, K., Xia, T., Jin, X. \& Tang, Y. (1993). Polyhedron, 12, 2895-2898.
Vidal, J. L., Fiato, R. A., Cosby, L. A. \& Pruett, R. L. (1978). Inorg. Chem. 17, 2574-2582.
Wu, X., Wang, B., Zheng, Y. \& Lu, J. (1988). Jiegou Huaxue (Chin. J. Struct. Chem.), 7, 47-49.
Zhang, Y. \& Holm, R. H. (2003). J. Am. Chem. Soc. 125, 3910-3920.
Zhang, Y. \& Holm, R. H. (2004). Inorg. Chem. 43, 674-682.
Zhang, Y., Zuo, J.-L., Zhou, H.-C. \& Holm, R. H. (2002). J. Am. Chem. Soc. 124, 14292-14293.
Zuo, J.-L., Zhou, H.-C. \& Holm, R. H. (2003). Inorg. Chem. 42, 4624-4631.

